EFFECT OF INELASTIC ELECTRON —ATOM
COLLISIONS ON NONEQUILIBRIUM IONIZATION RATE

1. P. Stakhanov and V. E. Cherkovets

We study possible formulations of the processes taking place near the cathode ofthe low-
voltage arc as a function of the relationship between the electron Coulomb free path (¢)
and the free path for elastic scattering of electrons by atoms (Ij) on the one hand, and for
inelastic scattering (/;), on the other hand. Expressions are obtained for the correction to
the Maxwellian distribution function, the local and overall nonequilibrium ionization rate
with atoms. Results of computer numerical calculations are presented.

In the overcompensated regime of a low-voltage arc, as a result of the cathode potential jump (Ey) the
electron distribution function near the cathode is not Maxwellian. The magnitude of E; is less than the first
atom-excitation energy level (E4) and therefore direct ionization by electron impact is not possible. How-
ever the distribution function disturbances, localized initially for energies E ~ E;, diffuse in energy space
and partially in the region E = Ey. This leads to additional (nonequilibrium) ionization. With increasing
distance from the cathode the distribution function disturbances relax, and ionization takes place as a result
of the tail electrons of the Maxwellian distribution. As E —0 and E — the electron-distribution function
is Maxwellian at any distance from the cathode.

Following [1, 2], we can write the equations for the correction to the distribution function
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and under the assumption that the nonelastic scattering cross section (gy) depends linearly on the electron

energy near Ey
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Here f is the true electron distribution function, f; is the Maxwellian function.

If removal of the ionization products takes place sufficiently rapidly, near the cathode ¢ >> Y—1 and
then in the region E > E4
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The boundary conditions at the cathode have the form [1]
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Here x is the distance to the cathode, T, and T are respectively the cathode and plasma electron tem-
peratures, n is the plasma density, p is the pressure of the neutral gas, J; is the Richardson current, v is
"the average plasma electron velocity, v is the ratio of the true number of atoms in the first excited state
to the thermodynamic equilibrium number, Io¢ is the electron Coulomb mean-free path, I, and I, are re-
spectively the mean-free paths for inelastic and elastic scattering of electrons by atoms.

Thus, the problem may be examined separately in the three regions E < Ey, Ey < E < Ey, E > Ey with
corresponding differential equations and boundary conditions on £. The conditions for continuity of the
function ¥ M, £) and its first derivative with respect to n for n =7, and n = 1y are imposed. The boundary
conditions (4) and (5) require application of the Wiener-Hopf method and in this case the solution encounters
serious difficulties. We can simplify the problem by examining two limiting cases:

(a) when g >> 1, relatively low neutral gas pressures p,and high plasma density n;
(b) when g << 1, large pressure p, low density n.

As shown in [3], case (a) corresponds to low reflection coefficient of the electrons entering the plas-
ma back to the cathode, case (b) corresponds to a high reflection coefficient. We note that the requirement
g >>1 by virtue of I; >> [, automatically leads to smallness of the parameter v and vice versa. The experi-
mental facts concerning the arc regime of the thermoemission converter {1, 4] indicate that the pressure p
is sufficiently low (1-6 mm Hg) and the density n is sufficiently high (1013-1014 ¢cm™) that the condition
g >> 1 is satisfied. Thus, two formulations of the problem are possible:

(@) when g >>1, ¥ < 1 along with retention in (5) of the term with 8 /8¢ and neglect of ¢ in com~
parison with this term;

(b) when g << 1, ¥ > 1 the derivative is dropped; case (a) is realized in the arc regime of the thermo-
emission converter.

In examining problem (a) there is no need to use the Wiener-Hopf method. Fourier transformation
with respect to £ and subsequent solution of the differential Eqs. (1) and (3) with corresponding boundary
conditions yield the following expressions for the Fourier transforms of the corrections to the distribu-
tion function

D, (k, &) = A; (k) exp (—pee) + B,y (k) exp (pge) for E < E,

@, (k, &) = A, (k) exp (— poe) + B, () exp (pee) + for Ey<{E<E,
V2 poexp(—@—1e)  exp(—e/2)
+ (Vg LBT pP— @)  pe—1s ]
Dy (k, 81) = A (k)exp (— piey) + By (k) exp (pesy) for E>E,
Vi l‘BTZexp (—r—=fe—@—1e _ exp (—81/2)]
(Vrg L PP — (T — )2 P2 —Y,

where the coefficients Ay, By, Ay, By, Ag, By are determined from the condition of continuity of ¢ and & /oy
for n =ny and 7 =1y and from the condition  ~-0 as E =0 and E —
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In the considered region E > E,, after inverse transformation we obtain
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Then the number of ions appearing per cm® per sec as a result of
71\ T disturbance of the distribution function may be found by calculating the inte-
' gral [1] :
V] \\Z &
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~—_] 0
Integrating (7) over £, we obtain the following equation for the total num-
s 7 J 3 ber of ions appearing in the interelectrode space per cm? of cathode area per
Fig. 5 sec in the nonequilibrium ionization case
0 (v, 1) = ZEEEEM (Bey, (r,y) — L, (1, 1) 8)
where
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The constant B, written previously in terms of J;, can be expressed in term of an easily measureable
quantity — the arc current J

B gJ Mo+ 1
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Now the expression for Q with account for inelastic electron—atom collisions has the form
Qt, p=a(t, VJ —0b(, V) (10)

where a(7,¥) and b(T,?¥) are found from (8) and (9). It follows from (10) that for each choice of 7,&,, ¥ there
is a minimal current J4 for which Q vanishes and then becomes negative (i, e., the total number of ions ap-
pearing in this case in the arc interelectrode space is less than in equilibrium). This effect is associated
with leakage to the cathode of high-energy electrons as a consequence of 7 > 1(T > T,).

ForTt=1,my+1 ®nyny +2 =1y we can use in place of (10) the simpler expression

Ey v EBEi—E 1]
0 =7 Zexp(— (B —E) I D)1+ 257 — 5|
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Equation (11) reflects the basic characteristics of nonequilibrium ionization and for small ¥ agrees
with the result obtained previously.

398



The calculations using (6) and (7) with account for (9) were made on a computer. The results are
shown in Figs, 1-5. In the calculations we used the following values of the plasma parameters
n = 2.108cni®, p = 1.66 mm Hg,
T =2400"K, E, = 1eV,E;, = 1.39 eV
Figures 1 and 2 show ¢ versus the dimensionless coordinate { = x /L for 7 = 1 (L = 0.0052 cm) for
T=1.5 (L = 0.0043 cm) with the energy E = Ey + T respectively for J =2 A/cm? and J = 0.2 A/cm?. Figures
3 and 4 show q verses ¢ respectively for J =2 A/em? and J = 0.2 A/em?, where q is in C/cm? . sec. Figure
5 shows for comparison the curves q(§) with (curve 1) and without (curve 2)-account for inelastic electron—
atom collisions (here J =2 A/em?, T = 1.5)

In conclusion we shall present several estimates of Q(7) using (10} for the previously indicated values
of the plasma parameters for different J and 7

Q1) =0.215 C/cm? . sec
Q (£.5) = 0.145C/cm? « sec for J = 2 Afem?®
Q (1) = 0.0215 C/cm? . sec
Q (1.5) = 0.0053 C/cm?esec for J = 0.2 A/cm’

The limiting current Jx in the case 7 = 1.5 is 0.07 A/cm?. However, if we consider inelastic col-
lisions, then

Q (1) = 0.283 C/cm? - sec
Q (1.5) = 0.225 C/em?.sec for J = 2 A/cm?
Q (1) = 0.0283 C/cm® . sec
@ (1.5) = 0.0092 c/cm®esec for J = 0.2 A/cm?

Thus, the effect of inelastic collisions is significant and increases with increase of 7. This is ex-
plained by the fact that the length I, ~ Ty, and lge ~ T?. Therefore

T:nllee]l1~T2/Tc

and the relative contribution of inelastic electron—atom collisionsbecomes greater with increase of T in
comparison with electron— electron collisions,
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